Kinematic Equations: Algebraic Method
Back to Physics Formulas and Derivations
Core Concepts
\definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{black}{v_{av}=\frac{\Delta x}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow} Because velocity will always change uniformly with time (IF acceleration is a constant value, then
\definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{MyGreen}v_{av} will be the mean of both the initial and final velocities.
\definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{MyGreen}\Longrightarrow\textcolor{red}{ v_{av}=\frac{(v_{i}+v_{f})}{2}}
\definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{black}{a=\frac{\Delta v}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow a} is a constant value
Equation #1: \textcolor{red}{\Delta x = {1 \over 2 } \left( v_i + v_f \right) t}
Note: Depending on what textbook you are using, different subscripts may be used. A subscript "zero" (v0) is the same as a subscript "i" (vi).
v_{av} = { \Delta x \over \Delta t }
{ \left( v_i + v_f \right) \over 2 } = { \left( x_f - x_i \right) \over \left( t_f - t_i \right) } Cross multiply
\left( v_i + v_f \right) \left( t_f - t_i \right) = 2 \left( x_f - x_i \right) Let ti = 0 and tf = t for simplicity
\left( v_i + v_f \right) \left( t_f - 0 \right) = 2 \left( x_f - x_i \right) Substitute
\left( x_f - x_i \right) = \Delta x
\left( v_i + v_f \right) t = 2 \left( \Delta x \right) Divide both sides by 2 and rearrange.
\textcolor{red}{\boxed{\Delta x = { 1 \over 2 } \left( v_i + v_f \right) t}}
Equation #2: \textcolor{red}{v_f = v_i + at}
a = { \Delta v \over \Delta t } Remember, "a" is a constant.
a = { \left( v_f - v_i \right) \over \left( t_f - t_i \right) } Left ti = 0 and tf = t.
a = { v_f - v_i \over t - 0 } Multiply both sides by t
a t = v_f - v_i Solve for vf
\textcolor{red}{\boxed{v_f = v_i + a t}}
Equation #3: \textcolor{red}{\Delta x = v_i t + {1 \over 2 } a t^2}
Note: This equation does not have a vf term!
Start with the two equations we just derived:
1. \Delta x = { 1 \over 2 } \left( v_i + v_f \right) t
2. v_f = v_i + a t
Substitute equation #2 into equation #1
\Delta x = { 1 \over 2 } \left( v_i + v_i + a t \right) t
\Delta x = { 1 \over 2 } t \space \left( 2 v_i + a t \right) Distribute the
{ 1 \over 2 } t
\Delta x = {1 \over 2 } t \left( 2 v_i \right)+ {1 \over 2 } t \left( a t \right)
\textcolor{red}{\boxed{\Delta x=v_it+\frac{1}{2}at^2}}
Equation #4: \textcolor{red}{v_f^2 = v_i ^2 +2a\Delta x}
Note: This equation does not have a "t" term!
Start with the two equations:
1. \Delta x=\frac{1}{2}(v_i+v_f)t
2. v_f=v_i +at
Start by solving equation 2 for t:
v_f=v_i+at
v_f-v_i=at
\frac{v_f-v_i}{a}=t
\textcolor{black}{t=}\textcolor{blue}{\frac{v_f-v_i}{a}}
Substitute the result into equation 1:
\Delta x=\frac{1}{2}(v_i+v_f)
\textcolor{black}{\Delta x=\frac{1}{2}(v_i+v_f)}\textcolor{blue}{\frac{v_f+v_i}{a}}
\textcolor{black}{\Delta x=\frac{1}{2}}{\textcolor{blue}{\underbrace{\textcolor{black}{(v_i+v_f)}}}}\textcolor{black}{\frac{v_f+v_i}{a}} Switch the order of
v_i and
v_f
\Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i) Multiply both sides by 2a
(2a)\Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i)(2a)
2a\Delta x=\underbrace{(v_f+v_i)(v_f-v_i)} This is a difference of squares
2a\Delta x=v_f^2-v_i^2
\textcolor{red}{\boxed{v_f^2=v_i^2+2a\Delta x}}