Kinematic Equations: Algebraic Method

Back to Physics Formulas and Derivations

Core Concepts

LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{black}{v_{av}=\frac{\Delta x}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow}\definecolor{MyGreen}{RGB}{1,68,33} \textcolor{black}{v_{av}=\frac{\Delta x}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow} Because velocity will always change uniformly with time (IF acceleration is a constant value, then LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{MyGreen}v_{av}\definecolor{MyGreen}{RGB}{1,68,33} \textcolor{MyGreen}v_{av} will be the mean of both the initial and final velocities. LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{MyGreen}\Longrightarrow\textcolor{red}{ v_{av}=\frac{(v_{i}+v_{f})}{2}}\definecolor{MyGreen}{RGB}{1,68,33} \textcolor{MyGreen}\Longrightarrow\textcolor{red}{ v_{av}=\frac{(v_{i}+v_{f})}{2}}

LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{black}{a=\frac{\Delta v}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow a}\definecolor{MyGreen}{RGB}{1,68,33} \textcolor{black}{a=\frac{\Delta v}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow a} is a constant value

 

Equation #1: LaTeX: \textcolor{red}{\Delta x = {1 \over 2 } \left( v_i + v_f \right) t}\textcolor{red}{\Delta x = {1 \over 2 } \left( v_i + v_f \right) t}

Note: Depending on what textbook you are using, different subscripts may be used. A subscript "zero" (v0) is the same as a subscript "i" (vi).

LaTeX: v_{av} = { \Delta x \over \Delta t }v_{av} = { \Delta x \over \Delta t }

LaTeX: { \left( v_i + v_f \right) \over 2 } = { \left( x_f - x_i \right) \over \left( t_f - t_i \right) }{ \left( v_i + v_f \right) \over 2 } = { \left( x_f - x_i \right) \over \left( t_f - t_i \right) }  Cross multiply

LaTeX: \left( v_i + v_f \right) \left( t_f - t_i \right) = 2 \left( x_f - x_i \right)\left( v_i + v_f \right) \left( t_f - t_i \right) = 2 \left( x_f - x_i \right)  Let ti = 0 and tf = t for simplicity

LaTeX: \left( v_i + v_f \right) \left( t_f - 0 \right) = 2 \left( x_f - x_i \right)\left( v_i + v_f \right) \left( t_f - 0 \right) = 2 \left( x_f - x_i \right)  Substitute LaTeX: \left( x_f - x_i \right) = \Delta x\left( x_f - x_i \right) = \Delta x

LaTeX: \left( v_i + v_f \right) t = 2 \left( \Delta x \right)\left( v_i + v_f \right) t = 2 \left( \Delta x \right) Divide both sides by 2 and rearrange.

LaTeX: \textcolor{red}{\boxed{\Delta x = { 1 \over 2 } \left( v_i + v_f \right) t}}\textcolor{red}{\boxed{\Delta x = { 1 \over 2 } \left( v_i + v_f \right) t}}

 

Equation #2: LaTeX: \textcolor{red}{v_f = v_i + at}\textcolor{red}{v_f = v_i + at}

LaTeX: a = { \Delta v \over \Delta t } a = { \Delta v \over \Delta t } Remember, "a" is a constant.

LaTeX: a = { \left( v_f - v_i \right) \over \left( t_f - t_i \right) }a = { \left( v_f - v_i \right) \over \left( t_f - t_i \right) }  Left ti = 0 and tf = t.

LaTeX: a = { v_f - v_i \over t - 0 }a = { v_f - v_i \over t - 0 }  Multiply both sides by t

LaTeX: a t  = v_f - v_ia t = v_f - v_i Solve for vf

LaTeX: \textcolor{red}{\boxed{v_f = v_i + a t}}\textcolor{red}{\boxed{v_f = v_i + a t}}

 

Equation #3: LaTeX: \textcolor{red}{\Delta x  = v_i t + {1 \over 2 } a t^2}\textcolor{red}{\Delta x = v_i t + {1 \over 2 } a t^2}

Note: This equation does not have a vf term!

Start with the two equations we just derived:

1. LaTeX: \Delta x = { 1 \over 2 } \left( v_i + v_f \right) t \Delta x = { 1 \over 2 } \left( v_i + v_f \right) t

2. LaTeX: v_f = v_i + a t v_f = v_i + a t

Substitute equation #2 into equation #1

LaTeX: \Delta x = { 1 \over 2 } \left( v_i + v_i + a t \right) t\Delta x = { 1 \over 2 } \left( v_i + v_i + a t \right) t

LaTeX: \Delta x = { 1 \over 2 } t \space \left( 2 v_i + a t \right)\Delta x = { 1 \over 2 } t \space \left( 2 v_i + a t \right)  Distribute the LaTeX: { 1 \over 2 } t{ 1 \over 2 } t

LaTeX: \Delta x = {1 \over 2 } t \left( 2 v_i \right)+ {1 \over 2 } t \left( a t \right)\Delta x = {1 \over 2 } t \left( 2 v_i \right)+ {1 \over 2 } t \left( a t \right)

LaTeX: \textcolor{red}{\boxed{\Delta x=v_it+\frac{1}{2}at^2}}\textcolor{red}{\boxed{\Delta x=v_it+\frac{1}{2}at^2}}

 

Equation #4: LaTeX: \textcolor{red}{v_f^2 = v_i ^2 +2a\Delta x}\textcolor{red}{v_f^2 = v_i ^2 +2a\Delta x}

Note: This equation does not have a "t" term!

Start with the two equations:

1. LaTeX: \Delta x=\frac{1}{2}(v_i+v_f)t\Delta x=\frac{1}{2}(v_i+v_f)t

2. LaTeX: v_f=v_i +atv_f=v_i +at 

Start by solving equation 2 for t: 

LaTeX: v_f=v_i+atv_f=v_i+at

LaTeX: v_f-v_i=atv_f-v_i=at

LaTeX: \frac{v_f-v_i}{a}=t\frac{v_f-v_i}{a}=t

LaTeX: \textcolor{black}{t=}\textcolor{blue}{\frac{v_f-v_i}{a}}\textcolor{black}{t=}\textcolor{blue}{\frac{v_f-v_i}{a}}

Substitute the result into equation 1:

LaTeX: \Delta x=\frac{1}{2}(v_i+v_f)\Delta x=\frac{1}{2}(v_i+v_f)

LaTeX: \textcolor{black}{\Delta x=\frac{1}{2}(v_i+v_f)}\textcolor{blue}{\frac{v_f+v_i}{a}}\textcolor{black}{\Delta x=\frac{1}{2}(v_i+v_f)}\textcolor{blue}{\frac{v_f+v_i}{a}}

LaTeX: \textcolor{black}{\Delta x=\frac{1}{2}}{\textcolor{blue}{\underbrace{\textcolor{black}{(v_i+v_f)}}}}\textcolor{black}{\frac{v_f+v_i}{a}}\textcolor{black}{\Delta x=\frac{1}{2}}{\textcolor{blue}{\underbrace{\textcolor{black}{(v_i+v_f)}}}}\textcolor{black}{\frac{v_f+v_i}{a}} Switch the order of LaTeX: v_iv_i and LaTeX: v_fv_f

LaTeX: \Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i)\Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i) Multiply both sides by 2a

LaTeX: (2a)\Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i)(2a)(2a)\Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i)(2a)

LaTeX: 2a\Delta x=\underbrace{(v_f+v_i)(v_f-v_i)}2a\Delta x=\underbrace{(v_f+v_i)(v_f-v_i)} This is a difference of squares

LaTeX: 2a\Delta x=v_f^2-v_i^22a\Delta x=v_f^2-v_i^2

LaTeX: \textcolor{red}{\boxed{v_f^2=v_i^2+2a\Delta x}}\textcolor{red}{\boxed{v_f^2=v_i^2+2a\Delta x}}