Kinematic Equations (Calculus Method)

Back to Physics Formulas and Derivations

Note: The calculus method will only derive 3 of the 4 kinematic equations. LaTeX: \Delta x = {1\over{2}}(v_i+v_f)tΔx=12(vi+vf)t must be obtained through the algebraic method. For the derivation of this equation, please see Kinematic Equations (Algebraic Method). (Make link)

Core concepts

LaTeX: {dv\over{dt}}=advdt=a

LaTeX: {dx\over{dt}}=vdxdt=v

a is a constant value

 

Equation #1:  LaTeX: v_f = v_i +atvf=vi+at

LaTeX: {dv\over{dt}}=advdt=a  Apply separation of variables

LaTeX: dv=a\space dtdv=a dt  Integrate

LaTeX: \displaystyle\int dv = \displaystyle\int a \space dtdv=a dt  Apply initial and final limits. Let LaTeX: t_i = 0ti=0 and LaTeX: t_f=ttf=t.

LaTeX: \displaystyle\int\limits_{v_i}^{v_f}dv= \displaystyle\int\limits_0^t a \space dtvfvidv=t0a dt

LaTeX: v \bigg|_{v_i}^{v_f} = at \bigg|_0^tv|vfvi=at|t0

LaTeX: v_f-v_i = at-\color{red}\cancelto{0}{\color{black}a(0)}vfvi=ata(0)0

LaTeX: v_f = v_i +atvf=vi+at

 

Equation #2: LaTeX: \Delta x = v_i t + {1\over 2}at^2Δx=vit+12at2

LaTeX: {dx \over dt}=vdxdt=v   Apply separation of variables

LaTeX: v \space dt = dxv dt=dx

Because v is a function of time, and not a constant (like acceleration), v dt cannot be directly integrated. An equation needs to be substituted for v. 

According to eq #1, the velocity at any point in time is LaTeX: v_f = v_i + atvf=vi+at where vi and a are constants. Eq #1 represents the velocity at any point as a function of time.

LaTeX: (v_i + at)dt = dx(vi+at)dt=dx

LaTeX: \displaystyle\int\limits_0^t (v_i + at)dt =\displaystyle \int\limits_{x_i}^{x_f}dxt0(vi+at)dt=xfxidx

LaTeX: \left( v_{i}t + {1 \over 2}at^2 \right) \Bigg|_0^t = x \Bigg|_{x_i}^{x_f}(vit+12at2)|t0=x|xfxi

LaTeX: v_i t + {1 \over 2}at^2 - z \color{red}\cancelto{0}{\color{black}v_i(0)} 


\color{black}- \color{red}\cancelto{\color{red}0}{\color{black}{1 \over 2} a (0)^2} \color{black} = x_f - x_i = \Delta xvit+12at2zvi(0)012a(0)20=xfxi=Δx

LaTeX: \Delta x = v_i t + {1 \over 2} a t^2Δx=vit+12at2

 

Equation #3: LaTeX: v_f^2 = v_i^2 +2a \Delta xv2f=v2i+2aΔx

To derive this equation, a time-independent derivative is required.

LaTeX: { dx \over dv }= \space ?dxdv= ?

LaTeX: { dx \over dt } = \space vdxdt= v   (given)

LaTeX: { dv \over dt } = \space advdt= a  Find the reciprocal. 

LaTeX: { dt \over dv } = \space {1 \over a }dtdv= 1a

LaTeX: { dx \over \color{red}\cancel{\color{black}dt} } \cdot { \color{red}\cancel{\color{black}dt} \over dv } = \space v \cdot { 1 \over a }dxdtdtdv= v1a

LaTeX: { dx \over dv } = \space { v \over a }dxdv= va  Separation of variables.

LaTeX: v \space dv = a \space dxv dv=a dx

LaTeX: \displaystyle\int\limits_{v_i}^{v_f} v \space dv = \displaystyle\int\limits_{x_i}^{x_f} a \space dxvfviv dv=xfxia dx

LaTeX: { 1 \over 2 } v^2 \bigg|_{v_i}^{v_f} = ax \bigg|_{x_i}^{x_f}12v2|vfvi=ax|xfxi

LaTeX: { 1 \over 2 } \left(v_f^2 - v_i^2 \right) = a \left(x_f - x_i\right)12(v2fv2i)=a(xfxi)  Multiply both sides by 2.

LaTeX: \color{red}\cancel{\color{black}\left(2\right)} \color{black}  {1 \over \color{red}\cancel{\color{black}2} } \left( v_f^2 -v_i^2 \right) = \left( 2 \right) a \left( x_f - x_i \right)(2)12(v2fv2i)=(2)a(xfxi)

LaTeX: v_f^2 - v_i^2 = 2 a \left( x_f = x_i \right)v2fv2i=2a(xf=xi)   Substitute LaTeX: x_f - x_i = \Delta xxfxi=Δx and rearrange.

LaTeX: v_f^2 = v_i^2 + 2 a \Delta xv2f=v2i+2aΔx