Kinematic Equations: Algebraic Method

Back to Physics Formulas and Derivations

Core Concepts

LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{black}{v_{av}=\frac{\Delta x}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow}vav=ΔxΔt Because velocity will always change uniformly with time (IF acceleration is a constant value, then LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{MyGreen}v_{av}vav will be the mean of both the initial and final velocities. LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{MyGreen}\Longrightarrow\textcolor{red}{ v_{av}=\frac{(v_{i}+v_{f})}{2}}vav=(vi+vf)2

LaTeX: \definecolor{MyGreen}{RGB}{1,68,33}
\textcolor{black}{a=\frac{\Delta v}{\Delta t}}\textcolor{MyGreen}{\Longrightarrow a}a=ΔvΔta is a constant value

 

Equation #1: LaTeX: \textcolor{red}{\Delta x = {1 \over 2 } \left( v_i + v_f \right) t}Δx=12(vi+vf)t

Note: Depending on what textbook you are using, different subscripts may be used. A subscript "zero" (v0) is the same as a subscript "i" (vi).

LaTeX: v_{av} = { \Delta x \over \Delta t }vav=ΔxΔt

LaTeX: { \left( v_i + v_f \right) \over 2 } = { \left( x_f - x_i \right) \over \left( t_f - t_i \right) }(vi+vf)2=(xfxi)(tfti)  Cross multiply

LaTeX: \left( v_i + v_f \right) \left( t_f - t_i \right) = 2 \left( x_f - x_i \right)(vi+vf)(tfti)=2(xfxi)  Let ti = 0 and tf = t for simplicity

LaTeX: \left( v_i + v_f \right) \left( t_f - 0 \right) = 2 \left( x_f - x_i \right)(vi+vf)(tf0)=2(xfxi)  Substitute LaTeX: \left( x_f - x_i \right) = \Delta x(xfxi)=Δx

LaTeX: \left( v_i + v_f \right) t = 2 \left( \Delta x \right)(vi+vf)t=2(Δx) Divide both sides by 2 and rearrange.

LaTeX: \textcolor{red}{\boxed{\Delta x = { 1 \over 2 } \left( v_i + v_f \right) t}}Δx=12(vi+vf)t

 

Equation #2: LaTeX: \textcolor{red}{v_f = v_i + at}vf=vi+at

LaTeX: a = { \Delta v \over \Delta t } a=ΔvΔt Remember, "a" is a constant.

LaTeX: a = { \left( v_f - v_i \right) \over \left( t_f - t_i \right) }a=(vfvi)(tfti)  Left ti = 0 and tf = t.

LaTeX: a = { v_f - v_i \over t - 0 }a=vfvit0  Multiply both sides by t

LaTeX: a t  = v_f - v_iat=vfvi Solve for vf

LaTeX: \textcolor{red}{\boxed{v_f = v_i + a t}}vf=vi+at

 

Equation #3: LaTeX: \textcolor{red}{\Delta x  = v_i t + {1 \over 2 } a t^2}Δx=vit+12at2

Note: This equation does not have a vf term!

Start with the two equations we just derived:

1. LaTeX: \Delta x = { 1 \over 2 } \left( v_i + v_f \right) t Δx=12(vi+vf)t

2. LaTeX: v_f = v_i + a t vf=vi+at

Substitute equation #2 into equation #1

LaTeX: \Delta x = { 1 \over 2 } \left( v_i + v_i + a t \right) tΔx=12(vi+vi+at)t

LaTeX: \Delta x = { 1 \over 2 } t \space \left( 2 v_i + a t \right)Δx=12t (2vi+at)  Distribute the LaTeX: { 1 \over 2 } t12t

LaTeX: \Delta x = {1 \over 2 } t \left( 2 v_i \right)+ {1 \over 2 } t \left( a t \right)Δx=12t(2vi)+12t(at)

LaTeX: \textcolor{red}{\boxed{\Delta x=v_it+\frac{1}{2}at^2}}Δx=vit+12at2

 

Equation #4: LaTeX: \textcolor{red}{v_f^2 = v_i ^2 +2a\Delta x}v2f=v2i+2aΔx

Note: This equation does not have a "t" term!

Start with the two equations:

1. LaTeX: \Delta x=\frac{1}{2}(v_i+v_f)tΔx=12(vi+vf)t

2. LaTeX: v_f=v_i +atvf=vi+at 

Start by solving equation 2 for t: 

LaTeX: v_f=v_i+atvf=vi+at

LaTeX: v_f-v_i=atvfvi=at

LaTeX: \frac{v_f-v_i}{a}=tvfvia=t

LaTeX: \textcolor{black}{t=}\textcolor{blue}{\frac{v_f-v_i}{a}}t=vfvia

Substitute the result into equation 1:

LaTeX: \Delta x=\frac{1}{2}(v_i+v_f)Δx=12(vi+vf)

LaTeX: \textcolor{black}{\Delta x=\frac{1}{2}(v_i+v_f)}\textcolor{blue}{\frac{v_f+v_i}{a}}Δx=12(vi+vf)vf+via

LaTeX: \textcolor{black}{\Delta x=\frac{1}{2}}{\textcolor{blue}{\underbrace{\textcolor{black}{(v_i+v_f)}}}}\textcolor{black}{\frac{v_f+v_i}{a}}Δx=12(vi+vf)vf+via Switch the order of LaTeX: v_ivi and LaTeX: v_fvf

LaTeX: \Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i)Δx=12a(vf+vi)(vfvi) Multiply both sides by 2a

LaTeX: (2a)\Delta x=\frac{1}{2a}(v_f+v_i)(v_f-v_i)(2a)(2a)Δx=12a(vf+vi)(vfvi)(2a)

LaTeX: 2a\Delta x=\underbrace{(v_f+v_i)(v_f-v_i)}2aΔx=(vf+vi)(vfvi) This is a difference of squares

LaTeX: 2a\Delta x=v_f^2-v_i^22aΔx=v2fv2i

LaTeX: \textcolor{red}{\boxed{v_f^2=v_i^2+2a\Delta x}}v2f=v2i+2aΔx