Science—Physics 2 Equations Trig Version

Electric Forces

LaTeX: F_e = k_e { \lvert q_1 \rvert \lvert q_2 \rvert \over r^2 }Fe=ke|q1||q2|r2  (Coulomb's Law)

LaTeX: k_e = {1 \over 4 \pi \epsilon _0 }ke=14πϵ0  (Coulomb's Constant)

LaTeX: \overset{\rightharpoonup}{ F_e } = q_0 \overset{\rightharpoonup}{E}Fe=q0E  (Electric Force)

 

Electric Fields

LaTeX: E = k_e { \lvert q \rvert \over r^2 }E=ke|q|r2  (Electric Field)

LaTeX: E_z^p = { 1 \over 2 \pi \epsilon_0 } {p \over z^3 } Epz=12πϵ0pz3  (Electric Field of a Dipole)

LaTeX: p = q dp=qd  (Electric Field of a Dipole)

LaTeX: E = { \sigma \over \epsilon_0 }E=σϵ0  (Electric Field on Metal Surface)

 

Gauss' Law

LaTeX: \Phi_E = { Q_{inside} \over \epsilon_0 }ΦE=Qinsideϵ0

LaTeX: \Phi_E = E A \space cos \space \thetaΦE=EA cos θ

 

Charge Densities

LaTeX: \lambda = { q \over L }λ=qL  (Linear)

LaTeX: \sigma = { q \over A }σ=qA  (Surface)

LaTeX: \rho = { p \over V }ρ=pV  (Volume)

 

Electric Potential

LaTeX: \Delta U = - q E_x \Delta xΔU=qExΔx  (Potential Energy)

LaTeX: \Delta U = q \Delta VΔU=qΔV (Electric Potential)

LaTeX: \Delta V = - E_x \Delta xΔV=ExΔx (Electric Potential)

LaTeX: V = k_e { q \over r }V=keqr  (Electric Potential of a Point Charge)

LaTeX: V = \displaystyle\sum\limits_{n=0}^N k_e { q_n \over r_n }V=Nn=0keqnrn  (Superposition Principle)

LaTeX: V = k_e { q \over R }V=keqR  (Electric Potential of a Sphere)

LaTeX:  U = k_e { q_1 q_2 \over r }U=keq1q2r  (Electric Potential of Two Point Charges)

 

Current

LaTeX: I = { \Delta Q \over \Delta t }I=ΔQΔt (Average Current)

LaTeX: I = n q v_d AI=nqvdA  (Average Current)

LaTeX: J = { i \over A }J=iA  (Current Density)

LaTeX: \overset{\rightharpoonup}{ J } = n e \overset{\rightharpoonup}{ v_d }J=nevd (Current Density)

LaTeX: \Delta V = I RΔV=IR  (Ohm's Law)

LaTeX: P = I \Delta VP=IΔV  (Power in Resistor)

LaTeX: P = I^2 RP=I2R  (Power Dissipation/Joule Heating)

LaTeX: \Delta V = \epsilon - I rΔV=ϵIr  (Terminal Voltage)

 

Resistors

LaTeX: R = \rho { l \over A }R=ρlA (Resistance) 

LaTeX: \rho = \rho_0 \left[ 1 + \alpha \left( T - T_0 \right) \right]ρ=ρ0[1+α(TT0)]  (Resistivity)

LaTeX: R = R_o \left[ 1 + \alpha \left( T - T_0 \right) \right]R=Ro[1+α(TT0)]  (Resistance)

LaTeX: R_s = \displaystyle \sum \limits_{i=1}^n R_i = R_1 + R_2 + R_3 + \dots + R_nRs=ni=1Ri=R1+R2+R3++Rn  (Resistors in Series)

LaTeX: { 1 \over R_p } = \displaystyle \sum \limits_{i=1}^n { 1 \over R_i} = { 1 \over R_1} + { 1 \over R_2 } + { 1 \over R_3 } + \dots + { 1 \over R_n }1Rp=ni=11Ri=1R1+1R2+1R3++1Rn  (Resistors in Parallel)

 

Capacitors

LaTeX: Q = C \Delta VQ=CΔV (Capacitance)

LaTeX: C = \epsilon_0 { A \over d }C=ϵ0Ad  (Parallel Plate Capacitance)

LaTeX: C = 4 \pi \kappa \epsilon_0 RC=4πκϵ0R  (Capacitance of a Sphere)

LaTeX: C_p = \displaystyle \sum \limits_{i=1}^n C_i = C_1 + C_2 + C_3 + \dots + C_nCp=ni=1Ci=C1+C2+C3++Cn  (Capacitors in Parallel)

LaTeX: { 1 \over C_s } = \displaystyle \sum \limits_{i=1}^n { 1 \over C_i } = { 1\over C_1 } + { 1 \over C_2 } + { 1 \over C_3 } + \dots + { 1 \over C_n }1Cs=ni=11Ci=1C1+1C2+1C3++1Cn  (Capacitors in Series)

 

 

 

 

AC Circuits

LaTeX: V = V_0 \space sin \space \omega tV=V0 sin ωt

LaTeX: I = I_0 \space sin \space \omega tI=I0 sin ωt

LaTeX: I_{rms} = { I_{max} \over \sqrt{2} }Irms=Imax2

LaTeX: V_{rms} = { V_{max} \over \sqrt{2} }Vrms=Vmax2

LaTeX: V_{rms} = I_{rms} RVrms=IrmsR

LaTeX: X_C = { 1 \over 2 \pi f c }XC=12πfc

LaTeX: V_{C,rms} = I_{rms} X_CVC,rms=IrmsXC

LaTeX: X_L = 2 \pi f LXL=2πfL

LaTeX: V_{L,rms} = I_{rms} X_LVL,rms=IrmsXL

 

RLC Circuit

LaTeX: V_{rms}^2 = V_R^2 + \left( V_L -V_C \right) ^2V2rms=V2R+(VLVC)2

LaTeX: Z = \sqrt{ R^2 + \left( X_L - X_C \right) ^2 }Z=R2+(XLXC)2

LaTeX: V_{rms} = I_{rms} ZVrms=IrmsZ

LaTeX: \displaystyle tan \space \phi = { X_L - X_C \over R } = { V_L -V_C \over V_R }tan ϕ=XLXCR=VLVCVR

LaTeX: \bar{P} = I_{rms} V_{rms} \space cos \space \phiˉP=IrmsVrms cos ϕ

LaTeX: f_0 = { 1 \over 2 \pi \sqrt{ L C } }f0=12πLC

 

Transformers

LaTeX: P_s = P_pPs=Pp  (Power)

LaTeX: \displaystyle V_s = { N_s \over N_p } V_pVs=NsNpVp  (Voltage step-up/down)

LaTeX: I_s = { N_p \over N_s } I_pIs=NpNsIp  (Current step-up/down)

 

Electromagnetic Waves

Speed of Light

LaTeX: c = \lambda fc=λf

LaTeX: { E \over B } = cEB=c  

LaTeX: \displaystyle c = { 1 \over \sqrt{ \mu_o \epsilon_0 } }c=1μoϵ0  

Intensity

LaTeX: \displaystyle I = { E_{max} B_{max} \over 2 \mu_0 }I=EmaxBmax2μ0

LaTeX: \displaystyle I = { E_{max}^2 \over 2 \mu_0 }I=E2max2μ0

LaTeX: \displaystyle I = { C \over 2 \mu_0 } B_{max}^2I=C2μ0B2max

Momentum

LaTeX: p = { U \over c }p=Uc  (photon is absorbed)

LaTeX: p = { 2 U \over c }p=2Uc  (photon is reflected)

LaTeX: p = { h \over \lambda }p=hλ  (Compton's Relation)

Energy

LaTeX: \displaystyle E = h f = {h c \over \lambda }E=hf=hcλ  (Planck's Relation)

 

Optics

LaTeX: \displaystyle n = { c \over v }n=cv  (Index of Refraction)

LaTeX: n = { \lambda_0 \over \lambda_n }n=λ0λn  (Index of Refraction)

LaTeX: n_1 \space sin \space \theta_1 = n_2 \space sin \space \theta_2n1 sin θ1=n2 sin θ2  (Snell's Law)

LaTeX: \displaystyle sin \space \theta_c = { n_2 \over n_1 }sin θc=n2n1  (Total Internal Reflection)

 

Mirrors and Lenses

Convex Mirrors

LaTeX: M = { h' \over h }M=hh

LaTeX: M = - { q \over p }M=qp

LaTeX: { 1 \over p } + { 1 \over q } = { 1 \over f }1p+1q=1f

Refraction Images

LaTeX:  { n_1 \over p } + { n_2 \over q } = { n_2 - n_1 \over R }n1p+n2q=n2n1R

LaTeX: M = { h' \over h }M=hh

LaTeX: M = - { n_1 q \over n_2 p }M=n1qn2p

Thin Lenses

LaTeX: M = { h' \over h }M=hh

LaTeX: M = - { q \over p }M=qp

LaTeX: { 1 \over p } + { 1 \over q } = { 1 \over f }1p+1q=1f