Science—Physics 2 Equations Trig Version
Electric Forces
Fe=ke|q1||q2|r2 (Coulomb's Law)
ke=14πϵ0 (Coulomb's Constant)
⇀Fe=q0⇀E (Electric Force)
Electric Fields
E=ke|q|r2 (Electric Field)
Epz=12πϵ0pz3 (Electric Field of a Dipole)
p=qd (Electric Field of a Dipole)
E=σϵ0 (Electric Field on Metal Surface)
Gauss' Law
ΦE=Qinsideϵ0
ΦE=EA cos θ
Charge Densities
λ=qL (Linear)
σ=qA (Surface)
ρ=pV (Volume)
Electric Potential
ΔU=−qExΔx (Potential Energy)
ΔU=qΔV (Electric Potential)
ΔV=−ExΔx (Electric Potential)
V=keqr (Electric Potential of a Point Charge)
V=N∑n=0keqnrn (Superposition Principle)
V=keqR (Electric Potential of a Sphere)
U=keq1q2r (Electric Potential of Two Point Charges)
Current
I=ΔQΔt (Average Current)
I=nqvdA (Average Current)
J=iA (Current Density)
⇀J=ne⇀vd (Current Density)
ΔV=IR (Ohm's Law)
P=IΔV (Power in Resistor)
P=I2R (Power Dissipation/Joule Heating)
ΔV=ϵ−Ir (Terminal Voltage)
Resistors
R=ρlA (Resistance)
ρ=ρ0[1+α(T−T0)] (Resistivity)
R=Ro[1+α(T−T0)] (Resistance)
Rs=n∑i=1Ri=R1+R2+R3+⋯+Rn (Resistors in Series)
1Rp=n∑i=11Ri=1R1+1R2+1R3+⋯+1Rn (Resistors in Parallel)
Capacitors
Q=CΔV (Capacitance)
C=ϵ0Ad (Parallel Plate Capacitance)
C=4πκϵ0R (Capacitance of a Sphere)
Cp=n∑i=1Ci=C1+C2+C3+⋯+Cn (Capacitors in Parallel)
1Cs=n∑i=11Ci=1C1+1C2+1C3+⋯+1Cn (Capacitors in Series)
AC Circuits
V=V0 sin ωt
I=I0 sin ωt
Irms=Imax√2
Vrms=Vmax√2
Vrms=IrmsR
XC=12πfc
VC,rms=IrmsXC
XL=2πfL
VL,rms=IrmsXL
RLC Circuit
V2rms=V2R+(VL−VC)2
Z=√R2+(XL−XC)2
Vrms=IrmsZ
tan ϕ=XL−XCR=VL−VCVR
ˉP=IrmsVrms cos ϕ
f0=12π√LC
Transformers
Ps=Pp (Power)
Vs=NsNpVp (Voltage step-up/down)
Is=NpNsIp (Current step-up/down)
Electromagnetic Waves
Speed of Light
c=λf
EB=c
c=1√μoϵ0
Intensity
I=EmaxBmax2μ0
I=E2max2μ0
I=C2μ0B2max
Momentum
p=Uc (photon is absorbed)
p=2Uc (photon is reflected)
p=hλ (Compton's Relation)
Energy
E=hf=hcλ (Planck's Relation)
Optics
n=cv (Index of Refraction)
n=λ0λn (Index of Refraction)
n1 sin θ1=n2 sin θ2 (Snell's Law)
sin θc=n2n1 (Total Internal Reflection)
Mirrors and Lenses
Convex Mirrors
M=h′h
M=−qp
1p+1q=1f
Refraction Images
n1p+n2q=n2−n1R
M=h′h
M=−n1qn2p
Thin Lenses
M=h′h
M=−qp
1p+1q=1f