Science—Physics 2 Equations Calculus Version
Electric Forces
Fe=ke|q1||q2|r2 (Coulomb's Law)
ke=14πϵ0 (Coulomb's Constant)
⇀Fe=q0⇀E (Electric Force)
→Fe=q0→E
Electric Fields
E=ke|q|r2 (Electric Field)
Epz=12πϵ0pz3 (Electric Field of a Dipole)
p=qd (Electric Dipole Moment)
E=σϵ0 (Electric Field on Metal Surface)
E=−∇V (Electric Field from Potential)
E=−dV(r)dr (Electric Field from Potential)
Gauss' Law
ΦE=Qinsideϵ0
ΦE=∮⇀E⋅d⇀A
ΦE=∮→E⋅d→A
Φ=EAcosθ
Charge Densities
λ=qL (Linear)
λ=dqdx (Linear)
σ=qA (Surface)
σ=dqdA (Surface)
ρ=qV (Volume)
ρ=dqdV (Volume)
Electric Potential
ΔU=−qExΔx (Potential Energy)
ΔU=qΔV (Electric Potential)
ΔV=−ExΔx (Electric Potential)
V=keqr (Electric Potential of a Point Charge)
V=n∑0keqnrn (Superposition Principle)
V=keqR (Electric Potential of a Sphere)
U=keq1q2r (Potential Energy of Two Point Charges)
ΔV=f∫i⇀E⋅d⇀s (Electric Potential)
ΔV=f∫i→E⋅d→s
Current
I=ΔQΔt (Average Current)
I=nqvdA (Average Current)
J=iA (Current Density)
⇀J=ne⇀vd (Current Density)
ΔV=IR (Ohm's Law)
P=IΔV (Power in Resistor)
P=I2R (Power in Resistor)
ΔV=ε−Ir (Terminal Voltage)
Resistors
R=ρlA (Resistance)
ρ=ρ0[1+α(T−T0)] (Resistivity)
R=R0[1+α(T−T0)] (Resistance)
RS=n∑i=1Ri=R1+R2+R3+⋯+Rn (Series)
1RP=n∑i=11Ri=1R1+1R2+1R3+⋯+1Rn (Parallel)
Capacitors
Q=CΔV (Capacitance)
C=ϵ0Ad (Parallel Plate Capacitance)
C=4πκϵ0R (Capacitance of a Sphere)
CP=n∑i=1Ci=C1+C2+C3+⋯+Cn (Parallel)
1CS=n∑i=11Ci=1C1+1C2+1C3+⋯+1Cn (Series)
C=κϵ0Ad (Dielectrics)
κ=ϵϵ0 (Dielectrics)
Energy Stored=12QΔV (Energy in a Charged Capacitor)
Energy Stored=12C(ΔV)2 (Energy in a Charged Capacitor)
Energy Stored=Q22C (Energy in a Charged Capacitor)
u=UV (Electric Density)
u=12ϵE2 (Electric Density)
RC Circuits
τ=RC (RC Time Constant)
q=Q(1−e−t/τ) (Charging RC Circuit)
q(t)=CVT(1−e−t/τ) (Charging RC Circuit)
I=VTR(e−t/τ) (Charging RC Circuit)
q=Q(e−t/τ) (Discharging RC Circuit)
I=qRC(e−t/τ) (Discharging RC Circuit)
I=Imax(e−t/τ) (Discharging RC Circuit)
Magnetism
FB=qvBsinθ (Magnetic Force)
⇀FB=q⇀v×⇀B (Magnetic Force)
FB=BILsinθ (Current Carrying Wire)
⇀FB=I⇀L×⇀B (Current Carrying Wire)
τ=BIAsinθ (Torque on a Loop of Wire)
r=mvqB (Cyclotron Motion)
d⇀B=μ04πId⇀s×⇀rr3 (Biot-Savart Law)
B=μ0I2πr (Biot-Savart Law)
FL=μ0I1I22πd (Magnetic Force between Two Wires)
B=Nμ0I2R (Magnetic Field of a Coil)
B=μ0nI (Magnetic Field of a Solenoid)
n=Nl (Turns in a Solenoid)
B=μ0IN2πr (Magnetic Field of a Toroid)
∮⇀B⋅d⇀s=μ0Ienc (Ampere's Law)
Induced EMF & Inductance
ΦB=BAcosθ (Magnetic Flux)
ΦB=∬⇀B⋅d⇀A (Magnetic Flux)
ε=−NΔΦBΔt (Faraday's Law of Induction)
ε=−ddtΦB (Faraday's Law of Induction)
ε=−ddt∬⇀B⋅d⇀A (Faraday's Law of Induction)
|ε|=Blv (Motional EMF)
ε=NABωsinωt (Generators)
ε=−LdIdt (Self-Induced EMF)
ε=−LΔIΔt (Self-Induced EMF)
L=NΦBI (Inductance of a Coil)
L=μ0N2Al (Inductance of a Solenoid)
UL=12LI2 (Inductor Potential Energy)
AC Circuits
V=V0sinωt (Time-Dependent Voltage)
I=I0sinωt (Time-Dependent Current)
ΔVrms=ΔVmax√2 (RMS & Max Relationship - Voltage)
ΔIrms=ΔImax√2 (RMS & Max Relationship - Current)
ΔVR,rms=IrmsR (Ohm's Law, RMS Version)
XC=12πfC (Capacitive Reactance)
ΔVC,rms=IrmsXC (RMS Voltage - Capacitor)
XL=2πfL (Inductive Reactance)
ΔVL,rms=IrmsXL (RMS Voltage - Inductor)
RLC Circuit
V2rms=V2R+(VL−VC)2 (RMS Voltage)
Z=√R2+(XL−XC)2 (Impedance)
Vrms=IrmsZ (RMS Voltage/Current)
Vmax=ImaxZ (Maximum Voltage/Current)
tan ϕ=XL−XCR=VL−VCVR (Phase Angle)
ˉP=IrmsVrms cos ϕ (Average Power)
f0=12π√LC (Resonance Frequency)
Transformers
Ps=Pp (Power)
Vs=NsNpVp (Voltage Step-Up/Down)
Is=NpNsIp (Current Step-Up/Down)
EM Waves
c=EB (Speed of Light)
c=1√μoϵ0 (Speed of Light)
I=EmaxBmax2μ0 (Intensity)
I=E2max2μ0 (Intensity)
I=C2μ0B2max (Intensity)
p=Uc (Momentum: Photon is Absorbed)
p=2Uc (Momentum: Photon is Reflected)
p=hλ (Compton's Relation)
Energy
E=hf=hcλ (Planck's Relation)
Optics
c=λf (Speed of Light)
n=cv (Index of Refraction)
n=λ0λn (Index of Refraction)
n1 sin θ1=n2 sin θ2 (Snell's Law)
sin θc=n2n1 (Total Internal Reflection)
Mirrors & Lenses
M=h′h (Convex Mirrors)
M=−qp (Convex Mirrors)
1p+1q=1f (Convex Mirrors)
n1p+n2q=n2−n1R (Refraction Images)
M=h′h (Refraction Images)
M=−n1qn2p (Refraction Images)
M=h′h (Thin Lenses)
M=−qp (Thin Lenses)
1p+1q=1f (Thin Lenses)
Constants
ke=8.99×109N⋅m2C2 (Coulomb's Constant)
ϵ0=8.854×10−12C2N⋅m2 (Permittivity of Free Space)
qe=−1.602×10−19C2 (Charge of Electron)
qp=1.602×10−19C2 (Charge of Proton)
me=9.109×10−31kg (Electron Mass)
mp=1.673×10−27kg (Proton Mass)
μ0=4π×10−7T⋅mA (Permeability of Free Space)
h=6.626×10−34J⋅s (Plank's Constant)
n=1.00 (Index of Refraction - Air)
n=1.333 (Index of Refraction - Water)
n=1.52 (Index of Refraction - Crown Glass)