Science—Physics 2 Equations Calculus Version

Electric Forces

LaTeX: F_e=k_e\displaystyle{\frac{|q_1||q_2|}{r^2}}Fe=ke|q1||q2|r2     (Coulomb's Law)

LaTeX: k_e=\displaystyle{\frac{1}{4\pi \epsilon_0}}ke=14πϵ0     (Coulomb's Constant)

LaTeX: \overset{\rightharpoonup}{F}_e=q_0\overset{\rightharpoonup}{E}Fe=q0E     (Electric Force)

LaTeX: \vec{F}_e=q_0\vec{E}Fe=q0E


Electric Fields

LaTeX: E=k_e\displaystyle{\frac{|q|}{r^2}}E=ke|q|r2     (Electric Field)

LaTeX: E_z^p=\displaystyle{\frac{1}{2\pi \epsilon_0}\frac{p}{z^3}}Epz=12πϵ0pz3     (Electric Field of a Dipole)

LaTeX: p=qdp=qd     (Electric Dipole Moment)

LaTeX: E=\displaystyle{\frac{\sigma}{\epsilon _0}}E=σϵ0     (Electric Field on Metal Surface)

LaTeX: E=-\nabla VE=V     (Electric Field from Potential)

LaTeX: E=-\displaystyle{\frac{\mathrm{d}V(r)}{\mathrm{d}r}}E=dV(r)dr     (Electric Field from Potential)


Gauss' Law

LaTeX: \Phi_E=\displaystyle{\frac{Q_\text{inside}}{\epsilon _0}}ΦE=Qinsideϵ0

LaTeX: \Phi_E=\displaystyle{\oint \overset{\rightharpoonup}{E}\cdot \mathrm{d}\overset{\rightharpoonup}{A}}ΦE=EdA

LaTeX: \Phi_E=\displaystyle{\oint \vec{E}\cdot \mathrm{d}\vec{A}}ΦE=EdA

LaTeX: \Phi = EA\cos\thetaΦ=EAcosθ


Charge Densities

LaTeX: \lambda=\displaystyle\frac{q}{L}λ=qL     (Linear)

LaTeX: \lambda=\displaystyle\frac{\mathrm{d}q}{\mathrm{d}x}λ=dqdx     (Linear)

LaTeX: \sigma=\displaystyle\frac{q}{A}σ=qA     (Surface)

LaTeX: \sigma=\displaystyle\frac{\mathrm{d}q}{\mathrm{d}A}σ=dqdA     (Surface)

LaTeX: \rho=\displaystyle\frac{q}{V}ρ=qV     (Volume)

LaTeX: \rho=\displaystyle\frac{\mathrm{d}q}{\mathrm{d}V}ρ=dqdV     (Volume)


Electric Potential

LaTeX: \Delta U=-qE_x\Delta xΔU=qExΔx     (Potential Energy)

LaTeX: \Delta U=q\Delta VΔU=qΔV     (Electric Potential)

LaTeX: \Delta V=-E_x\Delta xΔV=ExΔx     (Electric Potential)

LaTeX: V=k_e\displaystyle\frac{q}{r}V=keqr     (Electric Potential of a Point Charge)

LaTeX: V=\displaystyle\sum\limits_0^nk_e\frac{q_n}{r_n}V=n0keqnrn     (Superposition Principle)

LaTeX: V=k_e\displaystyle\frac{q}{R}V=keqR     (Electric Potential of a Sphere)

LaTeX: U=k_e\displaystyle\frac{q_1q_2}{r}U=keq1q2r     (Potential Energy of Two Point Charges)

LaTeX: \Delta V=\displaystyle\int\limits_i^f\overset{\rightharpoonup}{E}\cdot \mathrm{d}\overset{\rightharpoonup}{s}ΔV=fiEds     (Electric Potential)

LaTeX: \Delta V=\displaystyle\int\limits_i^f\vec{E}\cdot \mathrm{d}\vec{s}ΔV=fiEds


Current

LaTeX: I=\displaystyle\frac{\Delta Q}{\Delta t}I=ΔQΔt     (Average Current)

LaTeX: I=nqv_dAI=nqvdA     (Average Current)

LaTeX: J=\displaystyle\frac{i}{A}J=iA     (Current Density)

LaTeX: \overset{\rightharpoonup}{J}=ne\overset{\rightharpoonup}{v_d}J=nevd     (Current Density)

LaTeX: \Delta V=IRΔV=IR     (Ohm's Law)

LaTeX: P=I\Delta VP=IΔV     (Power in Resistor)

LaTeX: P=I^2RP=I2R     (Power in Resistor)

LaTeX: \Delta V=\varepsilon - IrΔV=εIr     (Terminal Voltage)


Resistors

LaTeX: R=\rho\displaystyle\frac{l}{A}R=ρlA     (Resistance)

LaTeX: \rho = \rho_0[1+\alpha(T-T_0)]ρ=ρ0[1+α(TT0)]     (Resistivity)

LaTeX: R =R_0[1+\alpha(T-T_0)]R=R0[1+α(TT0)]     (Resistance)

LaTeX: R_S= \displaystyle \sum \limits_{i=1}^n R_i=R_1+R_2+R_3+\cdots+R_nRS=ni=1Ri=R1+R2+R3++Rn     (Series)

LaTeX: \displaystyle\frac{1}{R_P}=\sum \limits_{i=1}^n \frac{1}{R_i}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}+\cdots +\frac{1}{R_n}1RP=ni=11Ri=1R1+1R2+1R3++1Rn     (Parallel)


Capacitors

LaTeX: Q=C\Delta VQ=CΔV     (Capacitance)

LaTeX: C=\epsilon_0\displaystyle\frac{A}{d}C=ϵ0Ad     (Parallel Plate Capacitance)

LaTeX: C=4\pi \kappa \epsilon_0RC=4πκϵ0R     (Capacitance of a Sphere)

LaTeX: C_P=\sum \limits_{i=1}^n C_i=C_1+C_2+C_3+\cdots +C_nCP=ni=1Ci=C1+C2+C3++Cn     (Parallel)

LaTeX: \displaystyle\frac{1}{C_S}=\sum \limits_{i=1}^n\frac{1}{C_i}=\frac{1}{C_1}+\frac{1}{C_2}+\frac{1}{C_3}+\cdots +\frac{1}{C_n}1CS=ni=11Ci=1C1+1C2+1C3++1Cn     (Series)

LaTeX: C=\kappa\epsilon_0\displaystyle\frac{A}{d}C=κϵ0Ad     (Dielectrics)

LaTeX: \kappa=\displaystyle\frac{\epsilon}{\epsilon_0}κ=ϵϵ0     (Dielectrics)

LaTeX: \text{Energy Stored}=\displaystyle\frac{1}{2}Q\Delta VEnergy Stored=12QΔV     (Energy in a Charged Capacitor)

LaTeX: \text{Energy Stored}=\displaystyle\frac{1}{2}C(\Delta V)^2Energy Stored=12C(ΔV)2     (Energy in a Charged Capacitor)

LaTeX: \text{Energy Stored}=\displaystyle\frac{Q^2}{2C}Energy Stored=Q22C     (Energy in a Charged Capacitor)

LaTeX: u=\displaystyle\frac{U}{V}u=UV     (Electric Density)

LaTeX: u=\displaystyle\frac{1}{2}\epsilon E^2u=12ϵE2     (Electric Density)


RC Circuits

LaTeX: \tau=RCτ=RC     (RC Time Constant)

LaTeX: q=Q\Big(1-e^{-t / \tau}\Big)q=Q(1et/τ)     (Charging RC Circuit)

LaTeX: q(t)=CV_T\Big(1-e^{-t / \tau}\Big)q(t)=CVT(1et/τ)     (Charging RC Circuit)

LaTeX: I=\displaystyle\frac{V_T}{R}\Big(e^{-t / \tau}\Big)I=VTR(et/τ)     (Charging RC Circuit)

LaTeX: q=Q\Big(e^{-t / \tau}\Big)q=Q(et/τ)     (Discharging RC Circuit)

LaTeX: I=\displaystyle\frac{q}{RC}\Big(e^{-t / \tau}\Big)I=qRC(et/τ)     (Discharging RC Circuit)

LaTeX: I=I_\text{max}\Big(e^{-t / \tau}\Big)I=Imax(et/τ)     (Discharging RC Circuit)


Magnetism

LaTeX: F_B=qvB\sin\thetaFB=qvBsinθ     (Magnetic Force)

LaTeX: \overset{\rightharpoonup}{F}_B=q\overset{\rightharpoonup}{v}\times\overset{\rightharpoonup}{B}FB=qv×B     (Magnetic Force)

LaTeX: F_B=BIL\sin\thetaFB=BILsinθ     (Current Carrying Wire)

LaTeX: \overset{\rightharpoonup}{F}_B=I\overset{\rightharpoonup}{L}\times\overset{\rightharpoonup}{B}FB=IL×B     (Current Carrying Wire)

LaTeX: \tau=BIA\sin\thetaτ=BIAsinθ     (Torque on a Loop of Wire)

LaTeX: r=\displaystyle\frac{mv}{qB}r=mvqB     (Cyclotron Motion)

LaTeX: \mathrm{d}\overset{\rightharpoonup}{B}=\displaystyle\frac{\mu_0}{4\pi}\frac{I\mathrm{d}\overset{\rightharpoonup}{s}\times\overset{\rightharpoonup}{r}}{r^3}dB=μ04πIds×rr3     (Biot-Savart Law)

LaTeX: B=\displaystyle\frac{\mu_0I}{2\pi r}B=μ0I2πr     (Biot-Savart Law)

LaTeX: \displaystyle\frac{F}{L}=\frac{\mu_0I_1I_2}{2\pi d}FL=μ0I1I22πd     (Magnetic Force between Two Wires)

LaTeX: B=N\displaystyle\frac{\mu_0I}{2R}B=Nμ0I2R     (Magnetic Field of a Coil)

LaTeX: B=\mu_0nIB=μ0nI     (Magnetic Field of a Solenoid)

LaTeX: n=\displaystyle\frac{N}{l}n=Nl     (Turns in a Solenoid)

LaTeX: B=\displaystyle\frac{\mu_0IN}{2\pi r}B=μ0IN2πr     (Magnetic Field of a Toroid)

LaTeX: \displaystyle\oint\overset{\rightharpoonup}{B}\cdot \mathrm{d}\overset{\rightharpoonup}{s}=\mu_0I_\text{enc}Bds=μ0Ienc     (Ampere's Law)


Induced EMF & Inductance

LaTeX: \Phi_B=BA\cos\thetaΦB=BAcosθ     (Magnetic Flux)

LaTeX: \Phi_B=\displaystyle\iint\overset{\rightharpoonup}{B}\cdot \mathrm{d}\overset{\rightharpoonup}{A}ΦB=BdA     (Magnetic Flux)

LaTeX: \varepsilon=-N\displaystyle\frac{\Delta \Phi_B}{\Delta t}ε=NΔΦBΔt     (Faraday's Law of Induction)

LaTeX: \varepsilon=-\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\Phi_Bε=ddtΦB     (Faraday's Law of Induction)

LaTeX: \varepsilon=-\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\iint\overset{\rightharpoonup}{B}\cdot \mathrm{d}\overset{\rightharpoonup}{A}ε=ddtBdA     (Faraday's Law of Induction)

LaTeX: |\varepsilon|=Blv|ε|=Blv     (Motional EMF)

LaTeX: \varepsilon=NAB\omega \sin \omega tε=NABωsinωt     (Generators)

LaTeX: \varepsilon=-L\displaystyle\frac{\mathrm{d}I}{\mathrm{d}t}ε=LdIdt     (Self-Induced EMF)

LaTeX: \varepsilon=-L\displaystyle\frac{\Delta I}{\Delta t}ε=LΔIΔt     (Self-Induced EMF)

LaTeX: L=\displaystyle\frac{N \Phi_B}{I}L=NΦBI     (Inductance of a Coil)

LaTeX: L=\displaystyle\frac{\mu_0N^2 A}{l}L=μ0N2Al     (Inductance of a Solenoid)

LaTeX: U_L=\displaystyle\frac{1}{2}LI^2UL=12LI2     (Inductor Potential Energy)


AC Circuits

LaTeX: V=V_0\sin\omega tV=V0sinωt     (Time-Dependent Voltage)

LaTeX: I=I_0\sin\omega tI=I0sinωt     (Time-Dependent Current)

LaTeX: \Delta V_\text{rms}=\displaystyle\frac{\Delta V_\text{max}}{\sqrt{2}}ΔVrms=ΔVmax2     (RMS & Max Relationship - Voltage)

LaTeX: \Delta I_\text{rms}=\displaystyle\frac{\Delta I_\text{max}}{\sqrt{2}}ΔIrms=ΔImax2     (RMS & Max Relationship - Current)

LaTeX: \Delta V_\text{R,rms}=I_\text{rms}RΔVR,rms=IrmsR     (Ohm's Law, RMS Version)

LaTeX: X_C=\displaystyle\frac{1}{2\pi f C}XC=12πfC     (Capacitive Reactance)

LaTeX: \Delta V_\text{C,rms}=I_\text{rms}X_CΔVC,rms=IrmsXC     (RMS Voltage - Capacitor)

LaTeX: X_L=2\pi f LXL=2πfL     (Inductive Reactance)

LaTeX: \Delta V_\text{L,rms}=I_\text{rms}X_LΔVL,rms=IrmsXL     (RMS Voltage - Inductor)


RLC Circuit

LaTeX: V_{rms}^2 = V_R^2 + \left( V_L -V_C \right) ^2V2rms=V2R+(VLVC)2     (RMS Voltage)

LaTeX: Z = \sqrt{ R^2 + \left( X_L - X_C \right) ^2 }Z=R2+(XLXC)2     (Impedance)

LaTeX: V_\text{rms} = I_\text{rms} ZVrms=IrmsZ     (RMS Voltage/Current)

LaTeX: V_\text{max} = I_\text{max} ZVmax=ImaxZ     (Maximum Voltage/Current)

LaTeX: \displaystyle tan \space \phi = { X_L - X_C \over R } = { V_L -V_C \over V_R }tan ϕ=XLXCR=VLVCVR     (Phase Angle)

LaTeX: \bar{P} = I_{rms} V_{rms} \space cos \space \phiˉP=IrmsVrms cos ϕ     (Average Power)

LaTeX: f_0 = \displaystyle{ 1 \over 2 \pi \sqrt{ L C } }f0=12πLC     (Resonance Frequency)


Transformers

LaTeX: P_s = P_pPs=Pp     (Power)

LaTeX: \displaystyle V_s = { N_s \over N_p } V_pVs=NsNpVp     (Voltage Step-Up/Down)

LaTeX: I_s = \displaystyle{ N_p \over N_s } I_pIs=NpNsIp     (Current Step-Up/Down)

 

EM Waves

LaTeX:  c=\displaystyle{ E \over B }c=EB     (Speed of Light)

LaTeX: \displaystyle c = { 1 \over \sqrt{ \mu_o \epsilon_0 } }c=1μoϵ0     (Speed of Light)

LaTeX: \displaystyle I = { E_{max} B_{max} \over 2 \mu_0 }I=EmaxBmax2μ0     (Intensity)

LaTeX: \displaystyle I = { E_{max}^2 \over 2 \mu_0 }I=E2max2μ0     (Intensity)

LaTeX: \displaystyle I = { C \over 2 \mu_0 } B_{max}^2I=C2μ0B2max     (Intensity)

LaTeX: p = \displaystyle{ U \over c }p=Uc     (Momentum: Photon is Absorbed)

LaTeX: p = \displaystyle{ 2 U \over c }p=2Uc     (Momentum: Photon is Reflected)

LaTeX: p =\displaystyle { h \over \lambda }p=hλ     (Compton's Relation)

Energy

LaTeX: \displaystyle E = h f = {h c \over \lambda }E=hf=hcλ     (Planck's Relation)


Optics

LaTeX: c = \lambda fc=λf     (Speed of Light)

LaTeX: n =\displaystyle { c \over v }n=cv  (Index of Refraction)

LaTeX: n =\displaystyle { \lambda_0 \over \lambda_n }n=λ0λn  (Index of Refraction)

LaTeX: n_1 \space sin \space \theta_1 = n_2 \space sin \space \theta_2n1 sin θ1=n2 sin θ2  (Snell's Law)

LaTeX: \displaystyle sin \space \theta_c = { n_2 \over n_1 }sin θc=n2n1  (Total Internal Reflection)


Mirrors & Lenses

LaTeX: M =\displaystyle { h' \over h }M=hh     (Convex Mirrors)

LaTeX: M = - \displaystyle{ q \over p }M=qp     (Convex Mirrors)

LaTeX: \displaystyle{ 1 \over p } + { 1 \over q } = { 1 \over f }1p+1q=1f     (Convex Mirrors)

LaTeX: \displaystyle{ n_1 \over p } + { n_2 \over q } = { n_2 - n_1 \over R }n1p+n2q=n2n1R     (Refraction Images)

LaTeX: M = \displaystyle{ h' \over h }M=hh     (Refraction Images)

LaTeX: M = - \displaystyle{ n_1 q \over n_2 p }M=n1qn2p     (Refraction Images)

LaTeX: M =\displaystyle { h' \over h }M=hh     (Thin Lenses)

LaTeX: M = - \displaystyle{ q \over p }M=qp     (Thin Lenses)

LaTeX: \displaystyle{ 1 \over p } + { 1 \over q } = { 1 \over f }1p+1q=1f     (Thin Lenses)


Constants

LaTeX: k_e=8.99\:\times\:10^9\:\displaystyle\frac{\text{N}\cdot \text{m}^2}{\text{C}^2}ke=8.99×109Nm2C2     (Coulomb's Constant)

LaTeX: \epsilon_0=8.854\:\times\:10^{-12}\:\displaystyle\frac{\text{C}^2}{\text{N}\cdot\text{m}^2}ϵ0=8.854×1012C2Nm2     (Permittivity of Free Space)

LaTeX: q_e=-1.602\:\times\:10^{-19}\:\text{C}^2qe=1.602×1019C2     (Charge of Electron)

LaTeX: q_p=1.602\:\times\:10^{-19}\:\text{C}^2qp=1.602×1019C2     (Charge of Proton)

LaTeX: m_e=9.109\:\times\:10^{-31}\:\text{kg}me=9.109×1031kg     (Electron Mass)

LaTeX: m_p=1.673\:\times\:10^{-27}\:\text{kg}mp=1.673×1027kg     (Proton Mass)

LaTeX: \mu_0=4\pi\:\times\:10^{-7}\:\displaystyle\frac{\text{T}\cdot \text{m}}{\text{A}}μ0=4π×107TmA     (Permeability of Free Space)

LaTeX: h=6.626\:\times\:10^{-34}\:\text{J}\cdot \text{s}h=6.626×1034Js     (Plank's Constant)

LaTeX: n=1.00n=1.00     (Index of Refraction - Air)

LaTeX: n=1.333n=1.333     (Index of Refraction - Water)

LaTeX: n=1.52n=1.52     (Index of Refraction - Crown Glass)