Moments of Inertia of Homogeneous Rigid Objects with Different Geometries

Back to Physics Formulas and Derivations

LaTeX: I_{CM} =MR^2\ (Hoop\ or\ thin\ cylindrical\ shell)\\
I_{CM}=\frac{1}{2} M(R_1^2+R_2^2) \ (Hollow\ cylinder)\\
I_{CM}=\frac{1}{2} MR^2 \ (Solid\ cylinder\ or\ disk)\\
I_{CM}=\frac{1}{12} M(a^2+b^2) \ (Rectangular\ plate)\\
I_{CM}=\frac{1}{12} ML^2\ (Long,\ thin\ rod\ with\ rotation\ axis\ through\ center)\\
I_{CM}=\frac{1}{3} ML^2 \ (Long,\ thin\ rod\ with\ rotation\ axis\ through\ end)\\
I_{CM}=\frac{2}{5} MR^2 \ (Solid\ sphere)\\
I_{CM}=\frac{2}{3} MR^2 \ (Thin\ spherical\ shell)\\ICM=MR2 (Hoop or thin cylindrical shell)ICM=12M(R21+R22) (Hollow cylinder)ICM=12MR2 (Solid cylinder or disk)ICM=112M(a2+b2) (Rectangular plate)ICM=112ML2 (Long, thin rod with rotation axis through center)ICM=13ML2 (Long, thin rod with rotation axis through end)ICM=25MR2 (Solid sphere)ICM=23MR2 (Thin spherical shell)