Limiting Reagents and Percent Yield II Answer Key (CHEM 1405)

Back to Chemistry 1405 Practice Problems

Write and balance the equations, then solve for the required quantity using dimensional analysis.

  1. Magnesium iodide reacts with liquid bromine in a single replacement reaction.

MgI2     +     Br2     Arrow.png     MgBr2     +     I2

a) Which is the excess reactant and how much excess remains from the reaction of 560 g of MgI2 and 360 g of Br2?

Limiting Reagent                                                                                                   Theoretical Yield
LaTeX: 560gMgI_2\times(\frac{1molMgI_2}{278.11gMgI_2})\times(\frac{1molI_2}{1molMgI_2})\times(\frac{253.80gI_2}{1molI_2})=560gMgI2×(1molMgI2278.11gMgI2)×(1molI21molMgI2)×(253.80gI21molI2)= 510g I
2

LaTeX: 360gBr_2\times(\frac{1molBr_2}{159.80gBr_2})\times(\frac{1molI_2}{1molBr_2})\times(\frac{253.80gI_2}{1molI_2})=360gBr2×(1molBr2159.80gBr2)×(1molI21molBr2)×(253.80gI21molI2)= 570g I2


Excess Reagent Calculation:  LaTeX: 560gMgI_2\times(\frac{1molMgI_2}{278.11gMgI_2})\times(\frac{1molBr_2}{1molMgI_2})\times(\frac{253.80gBr_2}{1molBr_2})=560gMgI2×(1molMgI2278.11gMgI2)×(1molBr21molMgI2)×(253.80gBr21molBr2)= 320g Br2 (used)

360g Br2 (total) - 320g Br2 (used) = 40g Br2 left over in excess

MgI2 is the limiting reagent and Br2 is the excess reagent.

 

b) What mass of I2 can be formed from the reaction?

510g I2  

 

 

 

 

  1. Nickel (II) reacts with silver nitrate in a single replacement reaction.

Ni     +     2AgNO3     Arrow.png     2Ag     +     Ni(NO3)2

a) If 22.9 g of nickel and 112 g of silver nitrate are provided, which is limiting?

LaTeX: 22.9gNi\times(\frac{1molNi}{58.69gNi})\times(\frac{1molNi(NO_3)_2}{1molNi})\times(\frac{182.71gNi(NO_3)_2}{1molNi(NO_3)_2})=22.9gNi×(1molNi58.69gNi)×(1molNi(NO3)21molNi)×(182.71gNi(NO3)21molNi(NO3)2)= 71.3g Ni(NO3)2

Limiting Reagent                                                                                                                                    Theoretical Yield
LaTeX: 112gAgNO_3\times(\frac{1molAgNO_3}{169.88gAgNO_3})\times(\frac{1molNi(NO_3)_2}{2molAgNO_3})\times(\frac{182.71gNi(NO_3)_2}{1molNi(NO_3)_2})=112gAgNO3×(1molAgNO3169.88gAgNO3)×(1molNi(NO3)22molAgNO3)×(182.71gNi(NO3)21molNi(NO3)2)= 60.2g Ni(NO3)2


Silver nitrate (AgNO3) is the limiting reagent.

 

b) What mass of nickel (II) nitrate can be produced?

60.2g Ni(NO3)2

 

 

 

 

  1. Given the following reaction:           CS2(g)     +     3O2(g)     Arrow.png     2SO2(g)     +     CO2(g)

a) If 1.60 mol of CS2 reacts with 5.60 mol of oxygen gas, identify the excess reactant. How many moles of the excess reactant remain after the reaction?

Limiting Reagent                                  Theoretical Yield
LaTeX: 1.60molCS_2\times(\frac{2molSO_2}{1molCS_2})=1.60molCS2×(2molSO21molCS2)= 3.20 mol SO2                          LaTeX: 5.60molO_2\times(\frac{2molSO_2}{3molO_2})=5.60molO2×(2molSO23molO2)= 3.73 mol SO2


Excess Reactant Calculation:  LaTeX: 1.60molCS_2\times(\frac{3molO_2}{1molCS_2})=4.80molO_21.60molCS2×(3molO21molCS2)=4.80molO2 (used)

5.60 mol O2 (total) - 4.80 mol O2 (used) = 0.80 mol O2 left over in excess

 

b) How much SO2 can be produced from the reaction?

3.20 mol SO2

 

c) How much CO2 can be produced from the reaction?

LaTeX: 1.60molCS_2\times(\frac{1molCO_2}{1molCS_2})=1.60molCS2×(1molCO21molCS2)= 1.60 mol CO2

 

 

 

 

Balance the following equations and then solve for the required quantity using dimensional analysis.

  1. Consider the following reaction:

2NO2     +     O3     Arrow.png     N2O5     +     O2

a) Calculate the percent yield for a reaction in which 0.38 g of NO2 reacts with excess O3 and 0.36 g of N2O5 is produced.

Limiting Reagent                                                                                                      Theoretical Yield
LaTeX: 0.38gNO_2\times(\frac{1molNO_2}{46.01gNO_2})\times(\frac{1molN_2O_5}{2molNO_2})\times(\frac{108.02gN_2O_5}{1molN_2O_5})=0.45gN_2O_50.38gNO2×(1molNO246.01gNO2)×(1molN2O52molNO2)×(108.02gN2O51molN2O5)=0.45gN2O5


LaTeX: \%yield=\frac{0.36gN_2O_5}{0.45gN_2O_5}\times100\%=%yield=0.36gN2O50.45gN2O5×100%= 80.%

 

b) What mass of N2O5 will result from the reaction of 6.0 mol of NO2 with excess O3 if there is a 61.1% yield in the reaction?

Limiting Reagent                                                                          Theoretical Yield
LaTeX: 6.0molNO_2\times(\frac{1molN_2O_5}{2molNO_2})\times(\frac{108.02gN_2O_5}{1molN_2O_5})=320gN_2O_56.0molNO2×(1molN2O52molNO2)×(108.02gN2O51molN2O5)=320gN2O5


LaTeX: 320gN_2O_5(theoretical)\times(\frac{61.1g N_2O_5 (actual) }{100gN_2O_5 (theoretical) })=320gN2O5(theoretical)×(61.1gN2O5(actual)100gN2O5(theoretical))= 2.0 x 102 g N2O5

 

 

 

 

  1. In the following equation:

2NaCl     +     H2SO4     Arrow.png     2HCl     +     Na2SO4

a) What is the percent yield if 14.6 g HCl are produced from 30.0 g NaCl and 0.250 mol of H2SO4?

LaTeX: 30.0gNaCl\times(\frac{1molNaCl}{58.44gNaCl})\times(\frac{2molHCl}{2molNaCl})\times(\frac{36.46gHCl}{1molHCl})=30.0gNaCl×(1molNaCl58.44gNaCl)×(2molHCl2molNaCl)×(36.46gHCl1molHCl)= 18.7 g HCl

Limiting Reagent                                                                               Theoretical Yield
LaTeX: 0.250molH_2SO_4\times(\frac{2molHCl}{1molH_2SO_4})\times(\frac{36.46gHCl}{1molHCl})=0.250molH2SO4×(2molHCl1molH2SO4)×(36.46gHCl1molHCl)= 18.2 g HCl


LaTeX: \%yield=\frac{14.6gHCl}{18.2gHCl}\times100\%=%yield=14.6gHCl18.2gHCl×100%= 80.2%

 

b) If 25.6 g of NaCl reacts with excess H2SO4 and 12.3 g of Na2SO4 are produced, what is the percent yield?

LaTeX: 25.6gNaCl\times(\frac{1molNaCl}{58.44gNaCl})\times(\frac{1molNa_2SO_4}{2molNaCl})\times(\frac{142.04gNa_2SO_4}{1molNa_2SO_4})=25.6gNaCl×(1molNaCl58.44gNaCl)×(1molNa2SO42molNaCl)×(142.04gNa2SO41molNa2SO4)= 31.1g Na2SO4

 

LaTeX: \%yield=\frac{12.3gNa_2SO_4}{31.1gNa_2SO_4}\times100\%=%yield=12.3gNa2SO431.1gNa2SO4×100%= 39.5%

 

 

 

 

  1. Assume the following hypothetical reaction takes place (already balanced):

2A     +     7B     Arrow.png     4C     +     3D

a) Calculate percent yield when 0.0251 mol of A reacts to form 0.0349 mol of C.

Limiting Reagent                             Theoretical Yield
LaTeX: 0.0251molA\times(\frac{4molC}{2molA})=0.0251molA×(4molC2molA)= 0.0502 mol C                         LaTeX: \%yield=\frac{0.0349molC}{0.0502molC}\times100\%=%yield=0.0349molC0.0502molC×100%= 69.5%

 

b) Calculate the percent yield when 189 mol of B reacts to form 39 mol of D.

LaTeX: 189molB\times(\frac{3molD}{7molB})=189molB×(3molD7molB)= 81.0 mol D                                         LaTeX: \%yield=\frac{39molD}{81.0molD}\times100\%=%yield=39molD81.0molD×100%= 48%