Limiting Reagents II Answer Key (CHEM 1405)

Back to Chemistry 1405 Practice Problems

Balance the equations, then solve for the required substance using dimensional analysis.

  1. Sulfur and oxygen gas combine to form sulfur trioxide.

2S      +      3O2      Arrow.png      2SO3

a)  If 6 moles of oxygen react with excess sulfur, how many moles of sulfur trioxide can be produced?

LaTeX: 6molO_2\times(\frac{2molSO_3}{3molO_2})=6molO2×(2molSO33molO2)= 4 mol SO3

 

b)  If 40.0 g of oxygen gas and 30.0 g of sulfur react to form sulfur trioxide, which is the limiting reagent?

Limiting Reagent                                                                                         Theoretical Yield
LaTeX: 40.0gO_2\times(\frac{1molO_2}{32.00gO_2})\times(\frac{2molSO_3}{3molO_2})\times(\frac{80.06gSO_3}{1molSO_3})=40.0gO2×(1molO232.00gO2)×(2molSO33molO2)×(80.06gSO31molSO3)= 66.7g SO3

LaTeX: 30.0gO_2\times(\frac{1molS}{32.06gS})\times(\frac{2molSO_3}{2molS})\times(\frac{80.06gSO_3}{1molSO_3})=30.0gO2×(1molS32.06gS)×(2molSO32molS)×(80.06gSO31molSO3)= 74.9g SO3

Oxygen gas (O2) is the limiting reagent.

 

c)  Given the data in part b, how many grams of sulfur trioxide can be produced?

66.7g SO3

 

 

 

  1. The hydrocarbon, CH3OH is completely combusted.

2CH3OH      +      3O2      Arrow.png      2CO2      +      4H2O

a)  If 64.0 g of each reactant is provided, which one is limiting?

LaTeX: 64.0gCH_3OH\times(\frac{1molCH_3OH}{32.05gCH_3OH})\times(\frac{4molH_2O}{2molCH_3OH})\times(\frac{18.02gH_2O}{1molH_2O})=64.0gCH3OH×(1molCH3OH32.05gCH3OH)×(4molH2O2molCH3OH)×(18.02gH2O1molH2O)= 72.0g H2O

Limiting Reagent                                                                                           Theoretical Yield
LaTeX: 64.0gO_2\times(\frac{1molO_2}{32.00gO_2})\times(\frac{4molH_2O}{3molO_2})\times(\frac{18.02gH_2O}{1molH_2O})=64.0gO2×(1molO232.00gO2)×(4molH2O3molO2)×(18.02gH2O1molH2O)= 48.1g H2O

Oxygen gas (O2) is the limiting reagent.

 

b)  How much water, in grams, can be produced from the reaction?

48.1g H2O

 

c)  How much carbon dioxide, in grams, can be produced from the reaction?

LaTeX: 64.0gO_2\times(\frac{1molO_2}{32.00gO_2})\times(\frac{2molCO_2}{3molO_2})\times(\frac{44.01gCO_2}{1molCO_2})=64.0gO2×(1molO232.00gO2)×(2molCO23molO2)×(44.01gCO21molCO2)= 58.7g CO2

 

 

 

  1. Magnesium metal reacts with water to form magnesium hydroxide and hydrogen gas.

Mg      +      2H2O      Arrow.png      Mg(OH)2      +      H2

a)  If 16.2 g of Mg reacts with 12.0 g of water, which reactant is limiting?

LaTeX: 16.2gMg\times(\frac{1molMg}{24.305gMg})\times(\frac{1molMg(OH)_2}{1molMg})\times(\frac{58.33gMg(OH)_2}{1molMg(OH)_2})=16.2gMg×(1molMg24.305gMg)×(1molMg(OH)21molMg)×(58.33gMg(OH)21molMg(OH)2)= 38.9g Mg(OH)2

Limiting Reagent                                                                                                                    Theoretical Yield
LaTeX: 12.0gH_2O\times(\frac{1molH_2O}{18.02gH_2O})\times(\frac{1molMg(OH)_2}{2molH_2O})\times(\frac{58.33gMg(OH)_2}{1molMg(OH)_2})=12.0gH2O×(1molH2O18.02gH2O)×(1molMg(OH)22molH2O)×(58.33gMg(OH)21molMg(OH)2)= 19.4g Mg(OH)2
 

H2O is the limiting reagent.

 

b)  How much of the excess reactant is left after the reaction occurs?

LaTeX: 12.0gH_2O\times(\frac{1molH_2O}{18.02gH_2O})\times(\frac{1molMg}{2molH_2O})\times(\frac{24.305gMg}{1molMg})=12.0gH2O×(1molH2O18.02gH2O)×(1molMg2molH2O)×(24.305gMg1molMg)= 8.09g Mg (used)


16.2g Mg (total)  -  8.09g Mg (used) = 8.1g Mg (in excess)

 

c)  How much magnesium hydroxide can be formed?

19.4g Mg(OH)2

 

 

 

  1. Sulfuric acid reacts with aluminum hydroxide in a double replacement reaction.

3H2SO4      +      2Al(OH)3      Arrow.png      Al2SO4      +      6H2O

a)  Identify the limiting reagent if 30.0 g of sulfuric acid reacts with 25.0 g of aluminum hydroxide.

Limiting Reagent                                                                                                           Theoretical Yield
LaTeX: 30.0gH_2SO_4\times(\frac{1molH_2SO_4}{98.08gH_2SO_4})\times(\frac{6molH_2O}{3molH_2SO_4})\times(\frac{18.02gH_2O}{1molH_2O})=30.0gH2SO4×(1molH2SO498.08gH2SO4)×(6molH2O3molH2SO4)×(18.02gH2O1molH2O)= 11.0g H
2O

LaTeX: 25.0gAl(OH)_3\times(\frac{1molAl(OH)_3}{78.01gAl(OH)_3})\times(\frac{6molH_2O}{2molAl(OH)_3})\times(\frac{18.02gH_2O}{1molH_2O})=25.0gAl(OH)3×(1molAl(OH)378.01gAl(OH)3)×(6molH2O2molAl(OH)3)×(18.02gH2O1molH2O)= 17.3g H2O

H2SO4 is the limiting reagent.

 

b)  How much of the excess reactant is left after the reaction occurs?

LaTeX: 30.0gH_2SO_4\times(\frac{1molH_2SO_4}{98.08gH_2SO_4})\times(\frac{2molAl(OH)_3}{3molH_2SO_4})\times(\frac{78.01gAl(OH)_3}{1molAl(OH)_3})=30.0gH2SO4×(1molH2SO498.08gH2SO4)×(2molAl(OH)33molH2SO4)×(78.01gAl(OH)31molAl(OH)3)= 15.9g Al(OH)3

25.0g Al(OH)3 (total)  -  15.9g Al(OH)3 (used) = 9.1g Al(OH)3 excess reactant left over

 

c)  How much aluminum sulfate can be formed?

LaTeX: 30.0gH_2SO_4\times(\frac{1molH_2SO_4}{98.08gH_2SO_4})\times(\frac{1molAl_2(SO_4)_3}{3molH_2SO_4})\times(\frac{342.14gAl_2(SO_4)_3}{1molAl_2(SO_4)_3})=30.0gH2SO4×(1molH2SO498.08gH2SO4)×(1molAl2(SO4)33molH2SO4)×(342.14gAl2(SO4)31molAl2(SO4)3)= 34.9g Al2(SO4)3

 

d)  How much water can be formed?

11.0g of water (H2O) could be formed under these circumstances.

 

 

 

  1. Zinc sulfide and oxygen gas react to form zinc oxide and sulfur dioxide.

2ZnS      +      3O2      Arrow.png      2ZnO      +      2SO2

If 1.72 mol of zinc sulfide is reacts with 3.04 mol of oxygen gas, which reactant is limiting?

Limiting Reagent                                    Theoretical Yield
LaTeX: 1.72molZnS\times(\frac{2molZnO}{2molZnS})=1.72molZnS×(2molZnO2molZnS)= 1.72 mol ZnO                             LaTeX: 3.04molO_2\times(\frac{2molZnO}{3molO_2})=3.04molO2×(2molZnO3molO2)= 2.03 mol ZnO

ZnS is the limiting reagent.

 

 

 

  1. Aluminum metal and oxygen gas combine to form aluminum oxide.

4Al      +      3O2      Arrow.png      2Al2O3

a)  Which reactant is limiting if 0.32 mol of Al and 0.26 mol of oxygen gas are available?

Limiting Reagent                                  Theoretical Yield
LaTeX: 0.32molAl\times(\frac{2molAl_2O_3}{4molAl})=0.32molAl×(2molAl2O34molAl)= 0.16 mol Al
2O3                             LaTeX: 0.26molO_2\times(\frac{2molAl_2O_3}{3molO_2})=0.26molO2×(2molAl2O33molO2)= 0.17 mol Al2O3

Aluminum (Al) is the limiting reagent.

 

b)  If 3.17 g of Al and 2.55 g of oxygen gas are available, how much aluminum oxide can be formed?

LaTeX: 3.17gAl\times(\frac{1molAl}{26.98gAl})\times(\frac{2molAl_2O_3}{4molAl})\times(\frac{101.96gAl_2O_3}{1molAl_2O_3})=3.17gAl×(1molAl26.98gAl)×(2molAl2O34molAl)×(101.96gAl2O31molAl2O3)= 5.99g Al2O3

Limiting Reagent                                                                                                   Theoretical Yield
LaTeX: 2.55gO_2\times(\frac{1molO_2}{32.00gO_2})\times(\frac{2molAl_2O_3}{3molO_2})\times(\frac{101.96gAl_2O_3}{1molAl_2O_3})=2.55gO2×(1molO232.00gO2)×(2molAl2O33molO2)×(101.96gAl2O31molAl2O3)= 5.42g Al2O3

5.42g Al2O3 is able to be formed.

 

 

 

  1. Copper II sulfide and oxygen gas react to form copper II oxide and sulfur dioxide.

2CuS      +      3O2      Arrow.png      2CuO      +      2SO2

a)  If 101 g of copper II sulfide and 56 g of oxygen are available, which reactant is limiting?

Limiting Reagent                                                                                                   Theoretical Yield
LaTeX: 101gCuS\times(\frac{1molCuS}{95.61gCuS})\times(\frac{2molCuO}{2molCuS})\times(\frac{79.55gCuO}{1molCuO})=101gCuS×(1molCuS95.61gCuS)×(2molCuO2molCuS)×(79.55gCuO1molCuO)= 84.0g CuO

LaTeX: 56gO_2\times(\frac{1molO_2}{32.00gO_2})\times(\frac{2molCuO}{3molO_2})\times(\frac{79.55gCuO}{1molCuO})=56gO2×(1molO232.00gO2)×(2molCuO3molO2)×(79.55gCuO1molCuO)= 93g CuO

Copper II sulfide (CuS) is the limiting reagent.

 

b)  What mass of copper II oxide can be formed from the reaction of 18.7 g of copper II sulfide and 12.0 g of oxygen?

Limiting Reagent                                                                                                   Theoretical Yield
LaTeX: 18.7gCuS\times(\frac{1molCuS}{95.61gCuS})\times(\frac{2molCuO}{2molCuS})\times(\frac{79.55gCuO}{1molCuO})=18.7gCuS×(1molCuS95.61gCuS)×(2molCuO2molCuS)×(79.55gCuO1molCuO)= 15.6g CuO

 

LaTeX: 12.0gO_2\times(\frac{1molO_2}{32.00gO_2})\times(\frac{2molCuO}{3molO_2})\times(\frac{79.55gCuO}{1molCuO})=12.0gO2×(1molO232.00gO2)×(2molCuO3molO2)×(79.55gCuO1molCuO)= 19.9g CuO

15.6g CuO can be formed under these conditions.