Mole Ratios and Mole Conversions Answer Key (CHEM 1405)

Back to Chemistry 1405 Practice Problems


Balance the following equations, and then write the mole ratios, using dimensional analysis.

1.     N2     +    3H2    Arrow-5.png    2NH3

 

a) write the ratio of nitrogen gas to hydrogen gas:  LaTeX: \frac{1molN_2}{3molH_2}1molN23molH2 or LaTeX: \frac{3molH_2}{1molN_2}3molH21molN2 

 

b) nitrogen gas to ammonia (NH3):   LaTeX: \frac{1molN_2}{2molNH_3}1molN22molNH3 or LaTeX: \frac{2molNH_3}{1molN_2}2molNH31molN2 

 

c) hydrogen gas to ammonia (NH3):   LaTeX: \frac{3molH_2}{2molNH_3}3molH22molNH3 or LaTeX: \frac{2molNH_3}{3molH_2}2molNH33molH2 

 

 

 

2.     8H2     +    S8    Arrow-5.png    8H2S

 

a) hydrogen gas to hydrogen sulfide:  LaTeX: \frac{8molH_2}{8molH_2S}8molH28molH2S or LaTeX: \frac{8molH_2S}{8molH_2}8molH2S8molH2 (This ratio can be reduced to 1:1)

 

b) hydrogen gas to sulfur:  LaTeX: \frac{8molH_2}{1molS_8}8molH21molS8 or LaTeX: \frac{1molS_8}{8molH_2}1molS88molH2 

 

c) hydrogen sulfide to sulfur:  LaTeX: \frac{8molH_2S}{1molS_8}8molH2S1molS8 or LaTeX: \frac{1molS_8}{8molH_2S}1molS88molH2S 

 

 

 

3.     CH4     +     2O2    Arrow-5.png     CO2    +     2H2O

 

a) oxygen gas to carbon dioxide:  LaTeX: \frac{2molO_2}{1molCO_2}2molO21molCO2 or LaTeX: \frac{1molCO_2}{2molO_2}1molCO22molO2 

 

b) methane (CH4) to carbon dioxide:   LaTeX: \frac{1molCH_4}{1molCO_2}1molCH41molCO2 or LaTeX: \frac{1molCO_2}{1molCH_4}1molCO21molCH4 

 

c) methane (CH4) to water:   LaTeX: \frac{1molCH_4}{2molH_2O}1molCH42molH2O or LaTeX: \frac{2molH_2O}{1molCH_4}2molH2O1molCH4 

 

d) oxygen gas to water:   LaTeX: \frac{2molO_2}{2molH_2O}2molO22molH2O or LaTeX: \frac{2molH_2O}{2molO_2}2molH2O2molO2 

 

 

 

4.     2H2     +    O2    Arrow-5.png     2H2O

 

a) hydrogen gas to water:  LaTeX: \frac{2molH_2}{2molH_2O}2molH22molH2O or LaTeX: \frac{2molH_2O}{2molH_2}2molH2O2molH2 

 

b) If you had 20 moles of hydrogen gas, how many moles of water could you make?

LaTeX: 20molH_2\times\frac{2molH_2O}{2molH_2}=20molH2×2molH2O2molH2= 20 mol H2O

 

c) oxygen gas to water:  LaTeX: \frac{1molO_2}{2molH_2O}1molO22molH2O or LaTeX: \frac{2molH_2O}{1molO_2}2molH2O1molO2 

 

d) If you had 20 moles of oxygen gas, how many moles of water could you make?

LaTeX: 20molO_2\times\frac{2molH_2O}{1molO_2}=20molO2×2molH2O1molO2= 40 mol H2O

 

 

 

5.     N2     +    3H2    Arrow-5.png    2NH3

 

a) If 1 mole of nitrogen gas were used, how many moles of ammonia would be produced?

LaTeX: 1molN_2\times\frac{2molNH_3}{1molN_2}=1molN2×2molNH31molN2= 2 mol NH3

 

b) If 10 moles of ammonia were produced, how many moles of nitrogen gas would be required?

LaTeX: 10molNH_3\times\frac{1molN_2}{2molNH_3}=10molNH3×1molN22molNH3= 5 mol N2

 

c) If 3.00 moles of hydrogen gas were used, how many moles of ammonia would be produced?

LaTeX: 3.00molH_2\times\frac{2molNH_3}{3molH_2}=3.00molH2×2molNH33molH2= 2 mol NH3 

 

d) If 0.600 moles of ammonia were produced, how many moles of hydrogen gas would be required?

LaTeX: 0.600molNH_3\times\frac{3molH_2}{2molNH_3}=0.600molNH3×3molH22molNH3= 0.900 mol H2

 

 

 

6.    2NaI    +     Cl2    Arrow-5.png    2NaCl      +      I2

 

a) How many moles of sodium chloride would be produced when 5.00 moles of chlorine gas are used?

LaTeX: 5.00molCl_2\times\frac{2molNaCl}{1molCl_2}=5.00molCl2×2molNaCl1molCl2= 10 mol NaCl

 

b) If 3.50 moles of sodium chloride are produced, how many moles of chlorine gas must be used?

LaTeX: 3.50molNaCl\times\frac{1molCl_2}{2molNaCl}=3.50molNaCl×1molCl22molNaCl= 1.75 mol Cl2

 

c) Given the data in part b, how many moles of sodium iodide must be used?

LaTeX: 3.50molNaCl\times\frac{2molNaI}{2molNaCl}=3.50molNaCl×2molNaI2molNaCl= 3.50 mol NaI

 

d) If 4.75 moles of sodium iodide are used, how many moles of pure iodine are produced?

LaTeX: 4.75molNaI\times\frac{1molI_2}{2molNaI}=4.75molNaI×1molI22molNaI= 2.38 mol I2