CHEM 1412 Concept Review: Acids, Bases, & Acid-Base Equilibrium

Back to CHEM 1412 Concept Reviews


Definitions for Acids and Bases

Arrhenius Definitions Bronsted-Lowry Definitions Lewis Definitions
For an ACID

A substance that produces H+ ions when dissolved in solution.

A substance that donates a proton (H+) as part of a chemical reaction.

A substance that accepts a pair of electrons as part of a chemical reaction.

For a BASE

A substance that produces OH- ions when dissolved in solution.

A substance that accepts a proton (H+) as part of a chemical reaction.

A substance that donates a pair of electrons as part of a chemical reaction.

Note:  We will largely be focusing on acids and bases from the perspective of the Bronsted-Lowry and Arrhenius definitions in this chapter.

 

 

The Auto-Ionization Equilibrium of Water

 

Arrhenius framework

Bronsted-Lowry framework

Chemical Equation

LaTeX: H_2O\left(l\right)\longleftrightarrow H^+\left(aq\right)+OH^-\left(aq\right)H2O(l)H+(aq)+OH(aq) LaTeX: 2H_2O\left(l\right)\longleftrightarrow H_3O^+\left(aq\right)+OH^-\left(aq\right)2H2O(l)H3O+(aq)+OH(aq)

Equilibrium Constant

LaTeX: K_w=\left[H^+\right]\left[OH^-\right]=1.0\times10^{-14}Kw=[H+][OH]=1.0×1014 LaTeX: K_w=\left[H_3O^+\right]\left[OH^-\right]=1.0\times10^{-14}Kw=[H3O+][OH]=1.0×1014


 

Relative Acid-Conjugate Base / Base-Conjugate Acid Strength Chart
CH 15 img 1.png

As you can see from above, the stronger the acid is, the weaker its conjugate base will be and vice-versa.

 

 

Bronsted-Lowry Acid-Base/Conjugate Acid-Conjugate Base Reactions

CH 15 img 2.png


Note:
The conjugate acid and the conjugate base are the acid and base for the REVERSE reaction, and are therefore always products.

 

 

Weak Acid Dissociation Equilibrium (Ka)

Arrhenius framework

Bronsted-Lowry framework

Generic Chemical Equation

LaTeX: HA\left(aq\right)\longleftrightarrow H^+\left(aq\right)+A^-\left(aq\right)HA(aq)H+(aq)+A(aq) LaTeX: HA\left(aq\right)+H_2O\left(l\right)\longleftrightarrow H_3O^+\left(aq\right)+A^-\left(aq\right)HA(aq)+H2O(l)H3O+(aq)+A(aq)

Equilibrium Constant Expression

LaTeX: K_a=\frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]}Ka=[H+][A][HA] LaTeX: K_a=\frac{\left[H_3O^+\right]\left[A^-\right]}{\left[HA\right]}Ka=[H3O+][A][HA]

Note:  The equilibrium reaction equation associated with Ka is always the reaction of a weak acid with WATER to form H3O+ and the conjugate base of the weak acid.

 

 

Percent Ionization of an Weak Acid:

LaTeX: Percent\:Ionization=\frac{\left[H_3O^+\right]_{equilibrium}}{\left[HA\right]_{initial}}\times100\%PercentIonization=[H3O+]equilibrium[HA]initial×100%

([H3O+] can be determined using an ICE chart and Ka)

 

 

Weak Base Dissociation Equilibrium (Kb)

Generic Chemical Equation

LaTeX: B\left(aq\right)+H_2O\left(l\right)\longleftrightarrow BH^+\left(aq\right)+OH^-\left(aq\right)B(aq)+H2O(l)BH+(aq)+OH(aq)

Equilibrium Constant Expression

LaTeX: K_b=\frac{\left[BH^+\right]\left[OH^-\right]}{\left[B\right]}Kb=[BH+][OH][B]

 

 

What is pH?

In pH, the “p” means “power of”, therefore the pH is the “power of hydrogen”, which refers to the magnitude of the negative exponent of the hydrogen ion concentration.  Mathematically, we determine the “power of hydrogen” by taking the negative logarithm of the hydrogen ion concentration, therefore mathematically “p” means “-log”.  This same relationship holds for other quantities as well.  Thus, we have the following relationships:                

pH and Related Equations

Logarithmic Form

 

Exponential Form

LaTeX: pH=-\log\left[H_3O^+\right]pH=log[H3O+] 

AND

LaTeX: \left[H_3O^+\right]=10^{-pH}[H3O+]=10pH 

LaTeX: pOH=-\log\left[OH^-\right]pOH=log[OH] 

AND

 LaTeX: \left[OH^-\right]=10^{-pOH}[OH]=10pOH

 LaTeX: pK_a=-\log\left(K_a\right)pKa=log(Ka)

AND

 LaTeX: K_a=10^{-pK_a}Ka=10pKa

LaTeX: pK_b=-\log\left(K_b\right)pKb=log(Kb) 

AND

 LaTeX: K_b=10^{-pK_b}Kb=10pKb

NOTE:  H+ may be used interchangeably with H3O+ in the above equations.

Because the pH represents the magnitude of the negative exponent, the larger the pH, the fewer hydrogen ions are present in solution, making the solution less acidic.  The equilibrium maintained in aqueous solutions between [H3O+] and [OH-] leads to the following relationships between pH, pOH, pKa, and pKb:

LaTeX: pH+pOH=14.00pH+pOH=14.00             LaTeX: pK_a+pK_b=14.00pKa+pKb=14.00             LaTeX: K_a\times K_b=K_w=1.0\times10^{-14}Ka×Kb=Kw=1.0×1014