Dot and Cross Product

Back to Physics Formulas and Derivations

Dot Product

LaTeX: C = \overset{\rightharpoonup}{A}\cdot \overset{\rightharpoonup}{B} =\:AB\cos\phiC=AB=ABcosϕ 

With LaTeX: \phiϕ being the angle in between LaTeX: \overset{\rightharpoonup}AA and LaTeX: \overset{\rightharpoonup}BB.

If

LaTeX: \overset{\rightharpoonup}{A}=A_x\hat{i} +A_y\hat{j} +A_z\hat{k}A=Axˆi+Ayˆj+Azˆk

LaTeX: \overset{\rightharpoonup}{B}=B_x\hat{i} +B_y\hat{j} +B_z\hat{k}B=Bxˆi+Byˆj+Bzˆk

LaTeX: C=\overset\rightharpoonup{A}\cdot \overset\rightharpoonup{B}= (A_x\hat{i} +A_y\hat{j} +A_z\hat{k}) \cdot (B_x\hat{i} +B_y\hat{j} +B_z\hat{k})C=AB=(Axˆi+Ayˆj+Azˆk)(Bxˆi+Byˆj+Bzˆk)

LaTeX: C= A_xB_x +A_y B_y +A_zB_zC=AxBx+AyBy+AzBz

The Dot Product results in a scalar, thus the alternative name, Scalar Product.

The scalar product obeys the distributive law of multiplication therefore,

LaTeX: \overset{\rightharpoonup}{A}\cdot (\overset{\rightharpoonup}{B} + \overset{\rightharpoonup}{C})=\overset{\rightharpoonup}{A}\cdot \overset{\rightharpoonup}{B} + \overset{\rightharpoonup}{A}\cdot \overset{\rightharpoonup}{C}A(B+C)=AB+AC


Cross Product

LaTeX: \overset{\rightharpoonup}{C} = \overset{\rightharpoonup}{A}\times  \overset{\rightharpoonup}{B}C=A×B

LaTeX: C=\:AB\sin\phiC=ABsinϕ

With LaTeX: \phiϕ being the angle in between LaTeX: \overset{\rightharpoonup}AA and LaTeX: \overset{\rightharpoonup}BB, the equation above only results in the magnitude of the cross product.

If,

LaTeX: \overset{\rightharpoonup}{A}=A_x\hat{i} +A_y\hat{j} +A_z\hat{k}A=Axˆi+Ayˆj+Azˆk

LaTeX: \overset{\rightharpoonup}{B}=B_x\hat{i} +B_y\hat{j} +B_z\hat{k}B=Bxˆi+Byˆj+Bzˆk

LaTeX: \overset{\rightharpoonup}{A}\times\overset{\rightharpoonup}{B} = \begin{matrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y &A_z \\ B_x & B_y & B_z
  \end{matrix}=\begin{matrix} A_y & A_z \\ B_y & B_z \\ \end{matrix} \hat{i} - \begin{matrix} A_x & A_z \\ B_x & B_z \\ \end{matrix} \hat{j} +\begin{matrix} A_x & A_y \\ B_x & B_y \\ \end{matrix} \hat{k}A×B=ˆiˆjˆkAxAyAzBxByBz=AyAzByBzˆiAxAzBxBzˆj+AxAyBxByˆk

Expanded form of the determinant below,

LaTeX: \overset{\rightharpoonup}{A}\times\overset{\rightharpoonup}{B} =(A_yB_z-A_zB_y)\hat{i}-(A_xB_z-A_zB_x)\hat{j}+(A_xB_y-A_yB_x)\hat{k}A×B=(AyBzAzBy)ˆi(AxBzAzBx)ˆj+(AxByAyBx)ˆk

The Cross Product results in a vector, thus the alternative name, Vector Product.

The vector product also obeys the distributive law.

LaTeX: \overset{\rightharpoonup}{A}\times  (\overset{\rightharpoonup}{B} + \overset{\rightharpoonup}{C})=\overset{\rightharpoonup}{A}\times \overset{\rightharpoonup}{B} + \overset{\rightharpoonup}{A}\times \overset{\rightharpoonup}{C}A×(B+C)=A×B+A×C